	//athematics (Object		All Sessions)	Gro		Time: 3	0 Minutes Marks: 20
Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each guestion are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each guestion with Markor or Dentity and the corresponding circle A, B, C or D given in front of each guestion with Markor or Dentity and the corresponding circle A, B, C or D given in front of each guestion with Markor or Dentity and the corresponding circle A, B, C or D given in front of each guestion with Markor or Dentity and the corresponding circle A, B, C or D given in front of each guestion with Markor or Dentity and the corresponding circle A, B, C or D given in front of each guestion with Markor or D given in the corresponding circle A, B, C or D given in front of each guestion with Markor or D given in the corresponding circle A, B, C or D given in front of each guestion with Markor or D given in the corresponding circle A, B, C or D given in front of each guestion with Markor or D given in the corresponding circle A, B, C or D given in front of each guestion with Markor or D given in the corresponding circle A, B, C or D given in front of each guestion and the circle A, B, C or D given in front of each guestion with the corresponding circle A, B, C or D given in front of each guestion with the circle A, B, C or D given in front of each guestion and the circle A, B, C or D given in front of each guestion and the circle A, B, C or D given in front of each guestion and the circle A, B, C or D given in front of each guestion and the circle A, B, C or D given in front of each guestion and the circle A, B, C or D given in front of each guestion and the circle A, B, C or D given in front of each guestion and the circle A, B, C or D given in front of each guestion and the circle A, B, C or D given in front of each guestion and the circle A, B, C or D given in front of each guestion and the circle A, B, C or D given in front of each guestion and the circle A, B, C or D given							
1.	$\frac{abc}{4\Delta} =$		3	Lw	P-11-1-23	Net Of Fell IIII	on the answer sheet provided.
	$\langle A \rangle$ r_1		r	(C)	R	(D)	Δ
2	V ai						
3	(A) $\cos^{\alpha}/2$ $\cos(Tan^{-1}0) = $	(B)	$\cos^{\beta}/_{2}$	(C)	$\cos^{\gamma}/2$	(D)	Cos ∝
	(A) -1	(B)	1	(C)	1	(D)	1
4.	Solution of $1 + Cosx =$	= 0 in $[0, 2\pi]$ is:			2		2
	(A) π	(B)	$\frac{\pi}{2}$	(C)	$\frac{3n}{2}$	(D)	$\frac{5\pi}{2}$
5.	The set{1} possess clos (A) Addition			(6)			<i>6</i> -
6.	A function $f: A \rightarrow B$ is		ultiplication ion if:	(C) S	ubtraction	(D)!	∃oth A & B
	(A) Range of $f =$	A (B)	Range of $f \neq A$	- (C)	Range of $f = B$	(D)	Range of $f \neq B$
7.	$ \text{If } A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 0 \\ -2 & -2 & 1 \end{bmatrix} $	then A =					
	(A) 4	(B)	7	(0)	10	(D)) / 13
8.	If order of a matrix "A" (A) $m \times p$	is $m \times n$ and on	der of matrix " B " $n \times p$	is $n \times p$ the		of matrices A	IB is:/
9.	The roots of $x^2 - 7x +$	10 = 0 are:	" " "	(0)	$m \times n$	(U)	$p \times n$
10.	(A) $-2, -5$ If \propto , β are the roots of 3	(B)	2,5	(0)	-2,8		2, -5
	(A) $\frac{2}{3}$	(B)	o, men sum orkodi Z	S 15:	4		4
	,	/	3	(6)	$\sqrt{3}$	(D)	$-\frac{1}{3}$
11.	Partial fractions of)(x+1) are:					
	$\frac{A}{x-1} + \frac{B}{x+1}$	$\frac{1}{1}$ (B) $\frac{1}{2}$	$\frac{Ax+B}{x-1} + \frac{C}{x+1}$	(C)	$\frac{A}{x-1} + \frac{Bx+c}{x+1}$	(D)	$\frac{Ax+B}{x^2-1}$
12.	Next two terms of sequent (A) 18, 20	ce 7, 9, 12, 16, (B)	are:	(C)	20, 22	(15)	
1/3.	1 1 1	then common rat	. \		20, 22	(D)	21, 27
1					54		
	$(A) \qquad \qquad \pm \sqrt{\frac{\kappa}{a}}$	(8)	A C	(C)	$\pm \left \frac{b}{c} \right $	(D)	$\pm \sqrt{\frac{c}{b}}$
14.	$n_{p_2} = 30$, then <i>n</i> is:		~		VI =		
15.	(A) 6	4 kovets	5	(C)	4	(D)	3
10.	In how many ways can (A) 1	4-keys be arrang	jed on a circular i 2	key ring: (C)	3	(D)	4
16.	$n! > n^2$ is true for $n \neq 0$.	(B)	2	(C)	3		. 4
17.	The formula for $(r+1)$					(D)	4
1	(A) $\binom{n}{r} a^{n-r} x^r$	(B)	$\binom{n}{r}$ $a^{n+r} x^r$		$\binom{n}{r} a^n x^{n-r}$	(D)	$\binom{n}{r} a^n x^{n+r}$
18.	Which one is the quadra (A) 30°	antal angle: (B)	45°	(C)	60°	(D)	900
19,	$\cos 2 \propto = \underline{\qquad}.$ (A) $1 - 2 \cos^2 \alpha$	c (B) 2	$! Cos^2 \propto -1$	(C)	Sin ∝ Cos ∝		
20.	Period of Cosec $\frac{x}{4}$ is:	. 117 2	. u.o.	(0)	3111 W 603 W	(D)	$2Sin \propto Cos \propto$
	(A) 2π	(E:)	4π 821	(C) I-11-A7	6π	(D)	8π
			(e)	į.			

HSSC-(P-I)-A/2023

农农

Roll No

to be fille I in by the candidate

to be filled in by the candidate HSSC-(P-I)-A/2023 (GROUP-I) (For All Sessions) Mathematics (Subjective)

Marks: 80

Vwp-11-1-23

Time: 2:30 hours

Write short answers of any eight parts from the following:

(8x2=16)

Name the properties used in equations: (a): 100 + 0 = 100 (b): $1000 \times 1 = 1000$

Separate into real and imaginary parts, if $Z = \frac{i}{1+i}$ iii. Differentiate between Equal and Equivalent sets, with example.

SECTION-I

Write the set: $\{x | x \in N \land 4 < x < 12\}$, in descriptive and tabular forms: V. Define semi-group.

vii. If the matrices A and B are symmetric and AB = BA, show that AB is symmetric. Find values of x if $\begin{vmatrix} 3 & 1 & x \\ -1 & 3 & 4 \\ x & 1 & 0 \end{vmatrix} = -30$ AB is symmetric.

ix. Solve: x(x + 7) = (2x-1)(x+4) by factorization. If $A = \begin{bmatrix} i & 1+i \\ 1 & -i \end{bmatrix}$, find $A + (\overline{A})^t$ VIII.

If ω is a cube root of unity, form an equation whose roots are $Z\omega$ and $Z\omega^2$

Find the three cube roots of -8 Find two consecutive numbers, whose product is 132. XI.

(8x2=16)Write short answers of any eight parts from the following: 3. Find vulgar fraction equivalent to recurring

Without finding constants write $\frac{x^2-10+13}{(x-1)(x^2-5x+6)}$ into partial fractions. Find the *nth* term of sequence $\left(\frac{4}{3}\right)^2$, $\left(\frac{7}{3}\right)^2$, $\left(\frac{10}{k}\right)^2$, ... iv. Calculate geometric means between 4 and 16.

If $y = \frac{2x}{3} + \frac{4x^2}{9} + \frac{8x^3}{27} + \cdots$ and if $0 < x < 3/\sqrt{1}$, then show that $x = \frac{2y}{2(1+y)}$

vii. Find the term involving x^{-2} in the expansion of $\left(x - \frac{2}{x^2}\right)^{13}$ Find 12th term of H.P: $\frac{1}{3}$, $\frac{2}{9}$, $\frac{1}{6}$,

How many words can be formed from PLANE using all letters when no letter is to be repeated. VIII.

A die is thrown. Find the probability that dots on top are prime numbers. χ. Write formula for "P, /and "C, iχ.

Expand $(1-x)^{1/2}$ up to 4 terms by binomial theorem. If x is so small that its square and higher powers be neglected, then show that: $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3x}{2}$

xii. (9x2=18)Write short answers of any nine parts from the following:

ii. Find $tan\theta$ and $cot\theta$ for $\theta = \frac{19\pi}{3}$ Define the word "Trigonometry"

Show that $sin^2\left(\frac{\pi}{6}\right) + sin^2\left(\frac{\pi}{3}\right) + tan^2\left(\frac{\pi}{4}\right) = 2$ iv. Find the value of $cos\left(\frac{\pi}{12}\right)$

Prove that $Sin(180^{\circ}+\infty)$ $Sin(90^{\circ}-\infty)=-Sin \propto Cos \infty$ vi. Define the principal tangent function.

Prove that $Sin(\alpha + \beta)Sin(\alpha - \beta) \neq \cos^2 \beta - \cos^2 \alpha$. viii. Define the period of a Trigonometry function VII.

Solve the right triangle AEC in which: $r=90^{\rm o}$, b=68.4 , c=96.2iΧ.

Solve the triangle ABC if $\beta = 60^{\circ}$, $r = 15^{\circ}$, $b = \sqrt{6}$

Find the area of triangle ABC for b=21.6 , c=30.2 , $\propto=52^{o}40'$ XI.

Find the solution of Cosec $\theta=2$ which lie in the interval $[0,2\pi]$ Define the trigonometric equation. xii.

SECTION-II

Attempt any three questions. Each question carries equal marks: Note

(10x3=30)

Find the matrix A if: $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} A = \begin{bmatrix} 0 & -3 & 8 \\ 3 & 3 & -7 \end{bmatrix}$ **5.** (a)

For what values of "m" the roots of the equation $x^2 - 2(1 + 3m)x + 7(3 + 2m) = 0$ be equal? (b)

Resolve into partial fractions $\frac{x^2}{(x-2)(x-1)^2}$ 6. (a)

 ${}^{1}_{C_{r-1}}$: ${}^{n}_{C_{r}}$: ${}^{n+1}_{C_{r+1}}$ = 3:6:11 Find the values of n and r when

Sum the series up to n terms $2 + (2 + 5) + (2 + 5 + 8) + \cdots$ 7. (a)

Use binomial theorem to show that: $1 + \frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.8.12} + \cdots = \sqrt{2}$ (b)

(b) Prove that $\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = 0$ Prove that $\frac{tan\theta + sec\theta - 1}{tan\theta - sec\theta + 1} = tan\theta + sec\theta$ 8. (a)

The measures of sides of a triangular plot are 413,214 and 375 meters. Find the measure of corner angles of the plot. 9. (a) 0 -1 8 - 0 -1 77

Mathematics (Objective)

(For All Sessions)

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

The sum of infinite geometric spries with common ratio $|\tau| < 1$ is:

à

A die is rolled. The probability that the dot on the top is greater than 4 is:

6

(D)

n-1

 $n \ge 3$

The value of $^{12}C_{10} =$ 3.

(B)

n >

66 The sum of exponents of a and b in every term in the expansion of $(a + b)^n$ is: n+1(B)

The inequality $n! > 2^n - 1$ is valid if n is: 5.

n = 3

 $n \leq 3$

(C)

radians = 6. (A)

7.

11.

15.

 120^{0}

 $Sin(2\pi - \theta) =$

(B)

 60^{0}

(C)

 90^{0} $Cos\theta$

(C)

(D) π

The period of Sin 2x =

s(s-a)

 $Sin\theta$

 -2π $\sin \frac{1}{2}$

 $-Sin\theta$

 $C^2 \sin \propto \sin \beta$

 $\cos \frac{\pi}{2}$

(D)

(D)

(D)

 $\cos\frac{\beta}{2}$

Hero's formula for area of riangle is: 10.

2siter π (C) 3

 30^{0}

π 6 450

(D) $\overline{6}$ 60^{0}

Positive

 $\frac{1}{2}ab\sin r$

= cosx then x =12. The equation $x^2 + 1 = 0$ has solution in

13.

0

Q

(D)

ightarrow q be a given conditional then $\sim q$ Inverse If A and B are non singular matrices, then $(AB)^{-1}$

AB

 $A^{-1}B^{-1}$

C

Contra positive

 $B^{-1}A^{-1}$ (D)

 $|A| \neq 0$ then system has: AX = 0 is homogeneous system with

No solution

Trivial solution

Non-trivial solution

Infinite solution (D)

17.

(A)

An equation which remains unchanged when x is replaced by $\frac{1}{x}$ is: 18.

Exponential

(B)

Reciprocal

Radical

Reducible

Partial fractions of $\frac{1}{x^2-1}$ will be of the form: 19.

(D)

A + Bx $x^2 - 1$

1

2

General term of the sequence 1,3,5 ... is: 20.

2n + 2

2n

823-11-A-

2n - 1

(D)

3n

Mathematics (Subjective:

(For All Sessions)

GROUP-II

Time: 2:30 hours

SECTION-I

Write short answers of any eight parts from the following:

Kwp-11-2-23

(8x2=16)

- 2. Find the multiplicative inverse of (-4, 7)i.
- Prove that Z = Z if Z is a real number.

- Write down the power set of {9, 11}
- Construct the truth table for $(P \land \sim P) \rightarrow q$

- Define a group.
- vi. If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ find the value of a and b.
- Find x if $\begin{vmatrix} 1 & x 1 & 3 \\ -1 & x + 1 & 2 \end{vmatrix} = 0$ Show that AA^{ε} is symmetric for any matrix of order 3x3. VII.
- Solve the equation: $(a+b)x^2 + (a+2b+c)x + b + c = 0$ ĺΧ.
- Find the condition that one root of $x^2 + px + q = 0$ is double the other.
- Show that the roots of $(mx + c)^2 = 4ax$ will be equal if $C \neq \frac{a}{m}$, $m \neq 0$ Xİ.
- Solve the equations simultaneously: x + y = 5; $x^2 + 2y^2 = 17$ χij.

Write the first three terms of $\binom{a}{n}$

- Write short answers of any eight parts from the following: 3. Resolve into $\frac{1}{x^2-1}$ partial fraction. Ì.
- If nth term of the A.F. is 3n-1, find the A.F.iii.
- Evaluate: 4!.0!.1! Which term of the sequence: $x^2 - y^2$, (x + y), $\frac{(x+y)}{(x-y)}$, is $\frac{x+y}{(x-y)}$ ٧.
- Define Harmonic Mean. Also derive formula. VI.
- How many numbers greater than 1000,000 can be formed from the digits 0,2,2,2,3,4,4? VII. Prove that: $n! > n^2$ for n = 4, 5.
- Find the value of n when ${}^{n}C_{10} = \frac{12 \times 11}{2!}$ viii.
- Find the sum of infinite $G.P.2, \sqrt{2}, 1, ...$
- Expand $(1+/x)^{-2}$ upto 3 terms. Χ. Using binomial theorems: (1,03) , calculate the value upto three decimal places. XII.
- (9x2=18)Write short answers of any nine parts from the following: Write domain and range of sin x
- Find θ when $\lambda = 1.5 \ cm$, $r \neq 2.5 \ cm$ If $\tan \theta < 0$ and in which quadrant θ will he
- Prove that $R = \frac{abc}{4\Delta}$ Prove than $\sin^2 \frac{\pi}{6} + \sin^2 \frac{\pi}{3} + \tan^2 \frac{\pi}{4}$ State law of Sines. Find the distance between A(3,8) and B(5,6).
- VIII.
- Find the value of $\sin 2/\infty$ when $\cos \alpha = \frac{3}{5}$ and $0 < \alpha < \pi/2$ ix.
- $= 45^{\circ}13'$; b = 421 find a and r. Х.
- Solve $cos x = \frac{\sqrt{3}}{2}$ where $x \in [0, 2\pi]$ Find the value of $cos(sin^{-1}\frac{1}{\sqrt{2}})$ Xİ.
- Define trigonometric equation. Give one example. xiii.

SECTION-II

Attempt any three questions. Each question carries equal marks: Note

(10x3=30)

- Reduce the following matrix into echelon form:
 - For what value of m will the roots of following equation be equal? $(1+m)x^2 - 2(1+3m)x + (1+8m) = 0$
- **6.** (a) Resolve $\frac{x^2+1}{x^3+1}$ into partial fractions.
 - A card is drawn from a deck of 52 playing cards. What is the probability that it is a diamond card or an ace?
- Show that sum of n. A. Ms between 'a' and 'b' is equal to n times their A. M. 7. (a)
 - If x is very near equal to 1. Then prove that $Px^p qx^q \approx (p-q)x^{p+q}$ (b)
- A railway train is running on circular track of radius 500 meters at the rate of 30 km per hours. 8. (a) Through what angle it turn in 10 seconds.
 - Show that $cos20^{\circ} cos40^{\circ} cos80^{\circ} = \frac{1}{8}$
- 9.(a) Show that $r_1 = 4R \sin \frac{\alpha}{2}$. Cos $\frac{\beta}{2}$. Cos $\frac{\gamma}{2}$ Prove that $tan^{-1} : \frac{120}{120} = 2 \cos^{-1} \frac{12}{120}$